Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis.

نویسندگان

  • Almir Feta
  • Anh-Tri Do
  • Fabian Rentzsch
  • Ulrich Technau
  • Marion Kusche-Gullberg
چکیده

HS (heparan sulfate) proteoglycans are key regulators of vital processes in the body. HS chains with distinct sequences bind to various protein ligands, such as growth factors and morphogens, and thereby function as important regulators of protein gradient formation and signal transduction. HS is synthesized through the concerted action of many different ER (endoplasmic reticulum) and Golgi-resident enzymes. In higher organisms, many of these enzymes occur in multiple isoforms that differ in substrate specificity and spatial and temporal expression. In order to investigate how the structural complexity of HS has evolved, in the present study we focused on the starlet sea anemone (Nematostella vectensis), which belongs to the Anthozoa, which are considered to have retained many ancestral features. Members of all of the enzyme families involved in the generation and modification of HS were identified in Nematostella. Our results show that the enzymes are highly conserved throughout evolution, but the number of isoforms varies. Furthermore, the HS polymerases [Ext (exostosin) enzymes Ext1, Ext2 and Ext-like3] represent distinct subgroups, indicating that these three genes have already been present in the last common ancestor of Cnidaria and Bilateria. In situ hybridization showed up-regulation of certain enzymes in specific areas of the embryo at different developmental stages. The specific mRNA expression pattern of particular HS enzymes implies that they may play a specific role in HS modifications during larval development. Finally, biochemical analysis of Nematostella HS demonstrates that the sea anemone synthesizes a polysaccharide with a unique structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of SULF1 Gene on Angiogenesis

Single-gene disorders occur when mutation in a gene causing alteration of gene function while in multifactorial disorders, mutations occur in multiple genes, and these are usually coupled with environmental causes. In addition, in a multifactorial disorder such as diabetes, the complication is under the influence of different genes. For example, in diabetic retinopathy many genes are involved i...

متن کامل

Heparan sulfate: a piece of information.

The sulfated glycosaminoglycans, heparan sulfate and heparin, are increasingly implicated in cell-biological processes such as cytokine action, cell adhesion, and regulation of enzymic catalysis. These activities generally depend on interactions of the polysaccharides with proteins, mediated by distinct saccharide sequences, and expressed at various levels of specificity, selectivity, and molec...

متن کامل

Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D.

Herpes simplex virus type 1 utilizes cell surface heparan sulfate as receptors to infect target cells. The unique heparan sulfate saccharide sequence offers the binding site for viral envelope proteins and plays critical roles in assisting viral infections. A specific 3-O-sulfated heparan sulfate is known to facilitate the entry of herpes simplex virus 1 into cells. The 3-O-sulfated heparan sul...

متن کامل

Tumor attenuation by combined heparan sulfate and polyamine depletion.

Cells depend on polyamines for growth and their depletion represents a strategy for the treatment of cancer. Polyamines assemble de novo through a pathway sensitive to the inhibitor, alpha-difluoromethylornithine (DFMO). However, the presence of cell-surface heparan sulfate proteoglycans may provide a salvage pathway for uptake of circulating polyamines, thereby sparing cells from the cytostati...

متن کامل

Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers

Emerging evidence suggests that the enzymes in the biosynthetic pathway for the synthesis of heparan sulfate moieties of heparan sulfate proteoglycans (HSPGs) are epigenetically regulated at many levels. As the exact composition of the heparan sulfate portion of the resulting HSPG molecules is critical to the broad spectrum of biological processes involved in oncogenesis, the epigenetic regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 419 3  شماره 

صفحات  -

تاریخ انتشار 2009